Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Int Wound J ; 21(4): e14867, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38597295

RESUMEN

Non-healing wounds are one of the chronic complications of diabetes and have remained a worldwide challenge as one of the major health problems. Hyperbaric oxygen (HBO) therapy is proven to be very successful for diabetic wound treatment, for which the molecular basis is not understood. Adipocytes regulate multiple aspects of repair and may be therapeutic for inflammatory diseases and defective wound healing associated with aging and diabetes. Endothelial cell-derived extracellular vesicles could promote wound healing in diabetes. To study the mechanism by which HBO promotes wound healing in diabetes, we investigated the effect of HBO on fat cells in diabetic mice. A diabetic wound mouse model was established and treated with HBO. Haematoxylin and eosin (H&E) staining and immunofluorescence were used for the analysis of wound healing. To further explore the mechanism, we performed whole-genome sequencing on extracellular vesicles (EVs). Furthermore, we conducted in vitro experiments. Specifically, exosomes were collected from human umbilical vein endothelial cell (HUVEC) cells after HBO treatment, and then these exosomes were co-incubated with adipose tissue. The wound healing rate in diabetic mice treated with HBO was significantly higher. HBO therapy promotes the proliferation of adipose precursor cells. HUVEC-derived exosomes treated with HBO significantly promoted fat cell browning. These data clarify that HBO therapy may promote vascular endothelial cell proliferation and migration, and promote browning of fat cells through vascular endothelial cells derived exosomes, thereby promoting diabetic wound healing. This provides new ideas for the application of HBO therapy in the treatment of diabetic trauma.


Asunto(s)
Diabetes Mellitus Experimental , Oxigenoterapia Hiperbárica , Humanos , Animales , Ratones , Cicatrización de Heridas/fisiología , Diabetes Mellitus Experimental/terapia , Células Endoteliales de la Vena Umbilical Humana , Tejido Adiposo Blanco
2.
J Nanobiotechnology ; 22(1): 94, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38449005

RESUMEN

BACKGROUND: Impaired osteo-/angiogenesis, excessive inflammation, and imbalance of the osteoimmune homeostasis are involved in the pathogenesis of the alveolar bone defect caused by periodontitis. Unfortunately, there is still a lack of ideal therapeutic strategies for periodontitis that can regenerate the alveolar bone while remodeling the osteoimmune microenvironment. Quercetin, as a monomeric flavonoid, has multiple pharmacological activities, such as pro-regenerative, anti-inflammatory, and immunomodulatory effects. Despite its vast spectrum of pharmacological activities, quercetin's clinical application is limited due to its poor water solubility and low bioavailability. RESULTS: In this study, we fabricated a quercetin-loaded mesoporous bioactive glass (Quercetin/MBG) nano-delivery system with the function of continuously releasing quercetin, which could better promote the bone regeneration and regulate the immune microenvironment in the alveolar bone defect with periodontitis compared to pure MBG treatment. In particular, this nano-delivery system effectively decreased injection frequency of quercetin while yielding favorable therapeutic results. In view of the above excellent therapeutic effects achieved by the sustained release of quercetin, we further investigated its therapeutic mechanisms. Our findings indicated that under the periodontitis microenvironment, the intervention of quercetin could restore the osteo-/angiogenic capacity of periodontal ligament stem cells (PDLSCs), induce immune regulation of macrophages and exert an osteoimmunomodulatory effect. Furthermore, we also found that the above osteoimmunomodulatory effects of quercetin via macrophages could be partially blocked by the overexpression of a key microRNA--miR-21a-5p, which worked through inhibiting the expression of PDCD4 and activating the NF-κB signaling pathway. CONCLUSION: In summary, our study shows that quercetin-loaded mesoporous nano-delivery system has the potential to be a therapeutic approach for reconstructing alveolar bone defects in periodontitis. Furthermore, it also offers a new perspective for treating alveolar bone defects in periodontitis by inhibiting the expression of miR-21a-5p in macrophages and thereby creating a favorable osteoimmune microenvironment.


Asunto(s)
FN-kappa B , Periodontitis , Humanos , Quercetina/farmacología , Periodontitis/tratamiento farmacológico , Flavonoides , Inflamación , Proteínas de Unión al ARN , Proteínas Reguladoras de la Apoptosis
3.
Appl Microbiol Biotechnol ; 108(1): 165, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38252275

RESUMEN

Ferulic acid (FA) and p-coumaric acid (p-CA) are hydroxycinnamic acid inhibitors that are mainly produced during the pretreatment of lignocellulose. To date, the inhibitory mechanism of hydroxycinnamic acid compounds on Saccharomyces cerevisiae has not been fully elucidated. In this study, liquid chromatography-mass spectrometry (LC-MS) and scanning electron microscopy (SEM) were used to investigate the changes in S. cerevisiae cells treated with FA and p-CA. In this experiment, the control group was denoted as group CK, the FA-treated group was denoted as group F, and the p-CA-treated group was denoted as group P. One hundred different metabolites in group F and group CK and 92 different metabolites in group P and group CK were selected and introduced to metaboanalyst, respectively. A total of 38 metabolic pathways were enriched in S. cerevisiae under FA stress, and 27 metabolic pathways were enriched in S. cerevisiae under p-CA stress as identified through Kyoto Encyclopaedia of Genes and Genomes (KEGG) analysis. The differential metabolites involved included S-adenosine methionine, L-arginine, and cysteine, which were significantly downregulated, and acetyl-CoA, L-glutamic acid, and L-threonine, which were significantly upregulated. Analysis of differential metabolic pathways showed that the differentially expressed metabolites were mainly related to amino acid metabolism, nucleotide metabolism, fatty acid degradation, and the tricarboxylic acid cycle (TCA). Under the stress of FA and p-CA, the metabolism of some amino acids was blocked, which disturbed the redox balance in the cells and destroyed the synthesis of most proteins, which was the main reason for the inhibition of yeast cell growth. This study provided a strong scientific reference to improve the durability of S. cerevisiae against hydroxycinnamic acid inhibitors. KEY POINTS: • Morphological changes of S. cerevisiae cells under inhibitors stress were observed. • Changes of the metabolites in S. cerevisiae cells were explored by metabolomics. • One of the inhibitory effects on yeast is due to changes in the metabolic network.


Asunto(s)
Ácidos Cumáricos , Saccharomyces cerevisiae , Ácidos Cumáricos/farmacología , Metabolómica , Aminoácidos
4.
ACS Appl Mater Interfaces ; 16(4): 4592-4599, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38230648

RESUMEN

Sodium-ion batteries have emerged as a promising alternative to Li-ion batteries due to the abundance of sodium. However, anodes in Na-ion batteries face challenges such as dendrite formation and an unstable solid electrolyte interface layer. To address these challenges, NaK liquid metal alloy anodes have been proposed as an alternative because they do not form dendrites. In our study, we demonstrate that the NaK alloy anode interacts with the commonly used ethylene carbonate and dimethyl carbonate electrolyte, leading to a continuously growing unstable SEI layer, evidenced by cycling failures under 100 cycles and an increasing charge transfer resistance in electrochemical impedance spectroscopy studies. In situ surface-enhanced Raman spectroscopy and X-ray photoelectron spectroscopy reveal that over the course of cycling the surface of the NaK anode becomes increasingly sodium-rich. After 30 cycles, XPS analysis detects only trace amounts of potassium on the NaK anode surface. When the electrolyte is analyzed postcycling using inductively coupled plasma optical emission spectroscopy, there is a noticeable increase in potassium levels, suggesting that potassium metal dissolves into the electrolyte. The introduction of a 10 wt % fluoroethylene carbonate additive can mitigate this problem to some extent, enabling an enhanced cycling performance of up to 800 cycles at 1C. Nevertheless, the dissolution of K metal is still evident in the XPS results, albeit to a lesser degree. These discoveries provide valuable insights for designing a more robust SEI layer for the NaK anode.

5.
Stud Health Technol Inform ; 308: 365-371, 2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-38007761

RESUMEN

Metabolomics has been widely used to identify changes in relevant differential metabolites. The metabolites of Saccharomyces cerevisiae cells supplemented with ferulic acid and p-coumaric acid were prepared and extracted. Untargeted metabolomics analysis of saccharomyces cerevisiae metabolites was performed. In addition, GNPS, Respect and MassBank databases were used to search and compare the information in the whole database. It was found that 100 and 92 different metabolites were significantly changed (P value < 0.05,VIP value > 1,) in Saccharomyces cerevisiae cells treated with ferulic acid and p-coumaric acid respectively. Including isothiocyanate, L-threonine, adenosine, glycerin phospholipid choline, niacinamide and palmitic acid. These metabolites with significant differences were enriched by KEGG pathway using MetPA database.


Asunto(s)
Ácidos Cumáricos , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Ácidos Cumáricos/farmacología , Ácidos Cumáricos/metabolismo , Metabolómica
6.
Bioresour Technol ; 386: 129565, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37506926

RESUMEN

Excessive waste-activated sludge (WAS) and insufficient carbon source (CS) for biological nitrogen removal (BNR) often coexist in municipal sewage treatment. Although the production of volatile fatty acids (VFAs) from WAS has been recognized as a promising solution, the development is limited by low VFAs production efficiency and dewatering deterioration of sludge. This study extracted the extracellular polymeric substances (EPS) from sludge by low-temperature thermal-hydrolysis (LTH) and high-speed hydro-cyclone (HSHC) pretreatment and recovered it for high-quality VFAs bio-production in thermophilic fermentation. Microbial mechanism analysis disclosed that interspecific interaction networks composed of functional flora, which accumulate VFAs by bio-converting EPS primarily and supplemented by EPS synthesis, guaranteed the efficient bio-production of VFAs. This process scheme shows promise in providing alternative denitrification CSs and avoiding deterioration of sludge dewaterability.


Asunto(s)
Matriz Extracelular de Sustancias Poliméricas , Aguas del Alcantarillado , Carbono , Concentración de Iones de Hidrógeno , Fermentación , Ácidos Grasos Volátiles
8.
Pharmacol Res ; 176: 105962, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34756923

RESUMEN

OBJECTIVE: Acute kidney injury (AKI) is a serious complication of sepsis. This study was performed to explore the mechanism that THBS1 mediated pyroptosis by regulating the TGF-ß signaling pathway in sepsis-induced AKI. METHODS: Gene expression microarray related to sepsis-induced AKI was obtained from the GEO database, and the mechanism in sepsis-induced AKI was predicted by bioinformatics analysis. qRT-PCR and ELISA were performed to detect expressions of THBS1, USF2, TNF-α, IL-1ß, and IL-18 in sepsis-induced AKI patients and healthy volunteers. The mouse model of sepsis-induced AKI was established, with serum creatinine, urea nitrogen, 24-h urine output measured, and renal tissue lesions observed by HE staining. The cell model of sepsis-induced AKI was cultured in vitro, with expressions of TNF-α, IL-1ß, and IL-18, pyroptosis, Caspase-1 and GSDMD-N, and activation of TGF-ß/Smad3 pathway detected. The upstream transcription factor USF2 was knocked down in cells to explore its effect on sepsis-induced AKI. RESULTS: THBS1 and USF2 were highly expressed in patients with sepsis-induced AKI. Silencing THBS1 protected mice against sepsis-induced AKI, and significantly decreased the expressions of NLRP3, Caspase-1, GSDMD-N, IL-1ß, and IL-18, increased cell viability, and decreased LDH activity, thus partially reversing the changes in cell morphology. Mechanistically, USF2 promoted oxidative stress responses by transcriptionally activating THBS1 to activate the TGF-ß/Smad3/NLRP3/Caspase-1 signaling pathway and stimulate pyroptosis, and finally exacerbated sepsis-induced AKI. CONCLUSION: USF2 knockdown downregulates THBS1 to inhibit the TGF-ß/Smad3 signaling pathway and reduce pyroptosis and further ameliorate sepsis-induced AKI.


Asunto(s)
Lesión Renal Aguda/etiología , Citocinas/genética , Sepsis/complicaciones , Trombospondina 1/genética , Factores Estimuladores hacia 5'/genética , Lesión Renal Aguda/genética , Lesión Renal Aguda/metabolismo , Animales , Caspasa 1/metabolismo , Línea Celular , Supervivencia Celular , Citocinas/metabolismo , Regulación hacia Abajo , Femenino , Humanos , Riñón/metabolismo , Masculino , Ratones Endogámicos C57BL , Persona de Mediana Edad , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Piroptosis , Sepsis/genética , Sepsis/metabolismo , Transducción de Señal , Proteína smad3/metabolismo
9.
Small ; 18(5): e2104439, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34816595

RESUMEN

The commercialization of MXenes as anodes for lithium-ion batteries is largely impeded by low initial coulombic efficiency (ICE) and unfavorable cycling stability, which are closely associated with defects such as Ti vacancies (VTi ) in Ti3 C2 MXenes. Herein, an effective strategy is developed to deactivate VTi defects by in situ growing Al2 O3 nanoclusters on MXenes to alleviate the irreversible electrolyte decomposition and Li dendrites formation trend induced by defects, improving ICE and cycling stability. Furthermore, it is revealed that excessively lithiophilic VTi defects would impede Li ions diffusion due to their strong adsorption, leading to a locally nonuniform Li flux to these "hot spots," setting scene for the formation of Li dendrites. The Al2 O3 nanoclusters anchored on VTi sites can not only improve Li diffusion kinetics but also promote the homogeneous solid electrolyte interphase formation with small charge transfer resistance, achieving uniform Li deposition in a smaller overpotential without formation of Li dendrites. As expected, Ti3 C2 @Al2 O3 -11 electrode delivers a high ICE of 76.6% and an outstanding specific capacity of 285.5 mAh g-1 after 500 cycles, which is much higher than that of pristine Ti3 C2 sample. This work sheds light on modulating defects for high-performance energy storage materials.

10.
Int J Biol Macromol ; 196: 172-179, 2022 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-34914912

RESUMEN

Bacterial cellulose (BC) is an emerging biological material with unique properties and structure, which has attracted more and more attention. In this study, Gluconacetobacter xylinus was used to convert sweet potato residues (SPR) hydrolysate to BC. SPR was directly used without pretreatment, and almost no inhibitors were generated, which was beneficial to subsequent glucan conversion and SPR-BC synthesis. SPR-BC production was 11.35 g/L under the optimized condition. The comprehensive structural characterization and mechanical analysis demonstrated that the crystallinity, maximum thermal degradation temperature, and tensile strength of SPR-BC were 87.39%, 263 °C, and 6.87 MPa, respectively, which were superior to those of BC produced with the synthetic medium. SPR-BC was added to rice straw pulp to enhance the bonding force between fibers and the indices of tensile, burst, and tear of rice straw paper. The indices were increased by 83.18%, 301.27%, and 169.58%, respectively. This research not only expanded the carbon source of BC synthesis, reduced BC production cost, but also improved the quality of rice straw paper.


Asunto(s)
Bacterias/metabolismo , Celulosa/biosíntesis , Fermentación , Ipomoea batatas/química , Metabolismo de los Hidratos de Carbono , Hidrólisis , Análisis Espectral , Termogravimetría
11.
J Inflamm Res ; 14: 3767-3780, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34393497

RESUMEN

BACKGROUND: Acute lung injury and acute respiratory distress syndrome (ALI/ARDS) are most often caused by bacterial pneumonia and characterized by severe dyspnea and high mortality. Knowledge about the lung injury effects of current clinical bacterial strains is lacking. The aim of this study was to investigate the ability of representative pathogenic bacteria isolated from patients to cause ALI/ARDS in mice and identify the major virulence factor. METHODS: Seven major bacterial species were isolated from clinical sputum and unilaterally instilled into the mouse airway. A histology study was performed to determine the lung injury effect. Virulence genes were examined by PCR. Sequence types of P. aeruginosa strains were identified by MLST. LC-MS/MS was used to analysis the bacterial exoproducts proteome. LasB was purified through a DEAE-cellulose column, and its toxicity was tested both in vitro and in vivo. RESULTS: Staphylococcus aureus, Streptococcus pneumoniae, Streptococcus agalactiae, Acinetobacter baumannii, Klebsiella pneumoniae, Pseudomonas aeruginosa and Escherichia coli were randomly separated and tested 3 times. Among them, gram-negative bacteria have much more potential to cause acute lung injury than gram-positive bacteria. However, P. aeruginosa is the only pathogen that induces diffuse alveolar damage, hemorrhage and hyaline membranes in the lungs of mice. The lung injury effect is associated with the excreted LasB elastase. Purified LasB recapitulated lung injury similar to P. aeruginosa infection in vivo. We found that this was due to the powerful degradation effect of LasB on the extracellular matrix of the lung and key proteins in the coagulation cascade without inducing obvious cellular apoptosis. We also report for the first time that LasB could induce DIC-like coagulopathy in vitro. CONCLUSION: P. aeruginosa strains are most capable of inducing ALI/ARDS in mice among major clinical pathogenic bacteria tested, and this ability is specifically attributed to their LasB production.

12.
Chemosphere ; 262: 127872, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32791370

RESUMEN

Magnetite nanoparticles (Fe3O4 NPs) was firstly used to enhance pollutants removal during coal gasification wastewater (CGW) treatment in anaerobic digestion (AD) system. Bench-scale results revealed that 200 mg/L and 20-40 nm of Fe3O4 NPs addition resulted in a maximum removal capacity of total phenol (TPh) at a temperature of 36 °C and hydraulic retention time (HRT) of 36 h. Meanwhile, Fe3O4 NPs addition reduced the oxidation reduction potential (ORP) values and biological toxicity, and enhanced the stability of AD system. Pilot-scale results showed that the TPh and chemical oxygen demand (COD) removal efficiency (53% and 49%) were obtained with the optimal dosage of Fe3O4 NPs. Moreover, electron nanowires may be established with Fe3O4 NPs assisted to perform direct interspecies electron transfer (DIET) among Geobacter, Pseudomonas and Methanosaeta species, and finally enhanced the pollutants removal efficiency.


Asunto(s)
Residuos Industriales , Nanopartículas de Magnetita/química , Industria del Petróleo y Gas , Eliminación de Residuos Líquidos/métodos , Anaerobiosis , Análisis de la Demanda Biológica de Oxígeno , Reactores Biológicos , Carbón Mineral , Electrones , Fenol , Fenoles , Pseudomonas , Aguas Residuales
13.
ACS Nano ; 14(11): 16022-16035, 2020 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-33169602

RESUMEN

Despite high theoretical capacity and earth-abundant resources, the potential industrialization of potassium-sulfur (K-S) batteries is severely plagued by poor electrochemical reaction kinetics and a parasitic shuttle effect. Herein, a facile low-temperature pyrolysis strategy is developed to synthesize N-doped Co nanocluster inlaid porous N-doped carbon derived from ZIF-67 as catalytic cathodes for K-S batteries. To maximize the utilization efficiency, the size of Co nanoparticles can be tuned from 7 nm to homogeneously distributed 3 nm clusters to create more active sites to regulate affinity for S/polysulfides, improving the conversion reaction kinetics between captured polysulfides and K2S3/S, fundamentally suppressing the shuttle effect. Cyclic voltammetry curves, Tafel plots, electrochemical impedance spectroscopy, and density functional theory calculations ascertain that 3 nm Co clusters in S-N-Cos-C cathodes exhibit superior catalytic activity to ensure low charge transfer resistance and energy barriers, enhanced exchange current density, and improved conversion reaction rate. The constructed S-N-Cos-C cathode delivers a superior reversible capacity of 453 mAh g-1 at 50 mA g-1 after 50 cycles, a dramatic rate capacity of 415 mAh g-1 at 400 mA g-1, and a long cycling stability. This work provides an avenue to make full use of high catalytic Co nanoclusters derived from metal-organic frameworks.

14.
J Neuroinflammation ; 17(1): 57, 2020 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-32061255

RESUMEN

BACKGROUND: Microglia activation is associated with the development of hypoxic-ischemic brain injury (HIBI). Neuroinflammation suppression might be a suitable therapeutic target in hypoxic oligodendrocyte injury. This study aims to determine whether clemastine can improve hypomyelination by suppressing the activated microglia and promoting the maturation of oligodendrocyte progenitor cells (OPCs) in HIBI. METHODS: A bilateral common carotid artery occlusion (BCCAO) rat model that received continuous intraperitoneal injection (1 mg/kg) for 14 days was employed to elaborate the neuroprotection effects of clemastine. Interleukin-1ß (IL-1ß), nod-like receptor protein 3 (NLRP3), histamine H1 receptor, and OPC differentiation levels in the corpus callosum were measured. Primary cultured OPCs and co-culture of microglia and OPCs were used to explore the link between microglia activation and hypomyelination. Data were evaluated by one-way ANOVA with Fisher's protected least significant difference test. RESULTS: Clemastine treatment could reverse hypomyelination and restrain the upregulation of IL-1ß and NLRP3 in the corpus callosum of BCCAO rats. Primary cultured OPCs treated with IL-1ß showed failed maturation. However, clemastine could also reverse the OPC maturation arrest by activating the extracellular signal-regulated kinase (ERK) signaling pathway. Co-culture of microglia and OPCs with oxygen glucose deprivation treatment exhibited IL-1ß and NLRP3 upregulation. Clemastine could downregulate NLRP3 and IL-1ß and reverse hypomyelination by inhibiting the p38 signaling pathway. CONCLUSIONS: Clemastine could restrain microglia activation, improve axonal hypomyelination in BCCAO rats, and thus might be a viable strategy to inhibit hypomyelination in the corpus callosum of patients with HIBI.


Asunto(s)
Clemastina/farmacología , Enfermedades Desmielinizantes/tratamiento farmacológico , Hipoxia-Isquemia Encefálica/tratamiento farmacológico , Interleucina-1beta/metabolismo , Microglía/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Clemastina/uso terapéutico , Antagonistas de los Receptores Histamínicos H1/farmacología , Antagonistas de los Receptores Histamínicos H1/uso terapéutico , Masculino , Microglía/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos
15.
Int J Biol Sci ; 15(13): 2872-2884, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31853224

RESUMEN

Mechanical ventilation has significant therapeutic benefits, but it may cause or aggravate lung injury, which is called ventilator-induced lung injury (VILI). Endogenous hydrogen sulfide (H2S) has roles including regulating inflammation, and promoting vasodilatation; it also exhibits anti-oxidative stress and anti-fibrosis effects. H2S has been reported to alleviate lung injury, but the effects and mechanism of H2S on VILI remain unclear. The present study established a rat model of VILI and treated them with H2S, then measured the changes in respiratory function indicators, lung tissue histopathology, and oxidative, inflammatory, and apoptotic indicators. The effect of H2S on autophagy in the VILI model and the involvement of endoplasmic reticulum (ER) stress were also investigated. To further explore the mechanism, L2 alveolar epithelial cells were treated with cyclic strain to mimic mechanical strain along with the H2S donor NaHS, and the involvement of the NF-κB/MAPK signaling pathway was examined. The results showed that H2S significantly alleviated VILI and inhibited the inflammation and oxidative stress induced by VILI. H2S also significantly reduced autophagy and ER stress in rats. The phosphorylation of IRE1α, PERK and eIF2α and the expression of nuclear ATF4, and GADD34 in L2 cells were all significantly reduced with NaHS. Nuclear NF-κB p65, MAPK p38, JNK, and ERK were all activated by cyclic strain, but inhibited by the ER stress inhibitor 4-PBA or NaHS. Our findings revealed that H2S treatment alleviated VILI by regulating autophagy and ER stress, and the PERK/eIF2α/ATF4/GADD34 and NF-κB/MAPK pathways were involved in the underlying mechanism.


Asunto(s)
Sulfuro de Hidrógeno/uso terapéutico , Lesión Pulmonar Inducida por Ventilación Mecánica/tratamiento farmacológico , Lesión Pulmonar Inducida por Ventilación Mecánica/metabolismo , Animales , Autofagia/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Masculino , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos
16.
ACS Appl Mater Interfaces ; 11(28): 25254-25263, 2019 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-31276377

RESUMEN

Three-dimensional hollow porous spherical architecture packed by iron-borate amorphous nanoparticles as an anode for lithium-ion batteries is first prepared through a simple method. The anode exhibits a high Coulombic efficiency and an ultralong cycle life under high rate, delivering outstanding reversible capacity of 1170 mAh g-1 after 360 cycles at 100 mA g-1 and 1160 mAh g-1 after 750 cycles at 200 mA g-1. The iron-borate anode has a prominent ultralong cycle life. The reversible capacity can still remain at about 600 mAh g-1 even after 3500 cycles at 2000 mA g-1, which maintains an outstanding capacity and delivers a much longer cycle life than that of the reported iron-based oxide anodes measured at same current density only within 1000 cycles. The hollow porous structure offers efficient electron-transport and Li+-diffusion paths and buffers the structural strains to alleviate excessive pulverization of the anode materials. Large specific surface area of the hollow porous structure increases the contact area between the anode and electrolyte, providing more reaction sites. More importantly, the amorphous characteristics of the iron-borate anode possess higher density of active sites and improved faster reaction kinetics. This work demonstrates that the hollow porous iron-borate particle anode allows mass production and is one of the most attractive anodes in energy-storage applications.

17.
Cell Mol Biol Lett ; 24: 37, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31168302

RESUMEN

BACKGROUND: Accumulating evidence has shown that altered microRNA (miR) modulation is implicated in the pathologies of ischemic stroke. However, it is unclear whether and how hsa-miR-19a-3p mediates cerebral ischemic injury. Herein, we investigated the functional role of miR-19a-3p in cerebral ischemic injury and explored its underlying regulatory mechanism. METHODS: In vivo ischemic/reperfusion (I/R) neuronal injury and in vitro oxygen-glucose deprivation (OGD) were established. Expression of miR-19a-3p was determined by quantitative real-time polymerase chain reaction (qRT-PCR). Glucose uptake, lactate production, and apoptosis were determined. ADIPOR2 was predicted as a target of miR-19a-3p in silico and experimentally validated by qRT-PCR, Western blot analysis and luciferase assay assays. RESULTS: MiR-19a expression was significantly downregulated and upregulated in rat neurons and astrocytes, respectively (P < 0.01). A significantly elevated level of miR-19a-3p was found in I/R and OGD models in comparison to sham/control groups (P < 0.01). Expression of the glycolysis enzyme markers LDHA, PKM2, HK2, Glut1 and PDK1, apoptosis-related factors levels, apoptosis, glucose uptake, and lactate production were significantly repressed by both I/R and OGD (P < 0.01 in each case). Moreover, miR-19a-3p mimic aggravated, while miR-19a-3p inhibitor alleviated, the above observations. Adipor2 was predicted and confirmed to be a direct target of miR-19a. Furthermore, restoration of Adipor2 reversed miR-19a-3p-induced effects. CONCLUSIONS: Collectively, our results indicate that elevated miR-19a-3p mediates cerebral ischemic injury by targeting ADIPOR2. MiR-19a-3p attenuation thus might offer hope of a novel therapeutic target for ischemic stroke injury treatment.


Asunto(s)
Apoptosis , Isquemia Encefálica/patología , Glucosa/metabolismo , MicroARNs/metabolismo , Neuronas/metabolismo , Neuronas/patología , Neuroprotección , Accidente Cerebrovascular/patología , Animales , Animales Recién Nacidos , Astrocitos/metabolismo , Secuencia de Bases , Modelos Animales de Enfermedad , MicroARNs/genética , Oxígeno , Ratas Sprague-Dawley , Receptores de Adiponectina/metabolismo , Regulación hacia Arriba/genética
18.
Small ; 15(30): e1900001, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31074926

RESUMEN

The large-scale commercial application of lithium-oxygen batteries (LOBs) is overwhelmed by the sluggish kinetics of oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) associated with insoluble and insulated Li2 O2 . Herein, an elaborate design on a highly catalytic LOBs cathode constructed by N-doped carbon nanotubes (CNT) with in situ encapsulated Co2 P and Ru nanoparticles is reported. The homogeneously dispersed Co2 P and Ru catalysts can effectively modulate the formation and decomposition behavior of Li2 O2 during discharge/charge processes, ameliorating the electronically insulating property of Li2 O2 and constructing a homogenous low-impedance Li2 O2 /catalyst interface. Compared with Co/CNT and Ru/CNT electrodes, the Co2 P/Ru/CNT electrode delivers much higher oxygen reduction triggering onset potential and higher ORR and OER peak current and integral areas, showing greatly improved ORR/OER kinetics due to the synergistic effects of Co2 P and Ru. Li-O2 cells based on the Ru/Co2 P/CNT electrode demonstrate improved ORR/OER overpotential of 0.75 V, excellent rate capability of 12 800 mAh g-1 at 1 A g-1 , and superior cycle stability for more than 185 cycles under a restricted capacity of 1000 mAh g-1 at 100 mA g-1 . This work paves an exciting avenue for the design and construction of bifunctional catalytic cathodes by coupling metal phosphides with other active components in LOBs.

19.
Exp Ther Med ; 17(5): 3689-3693, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30988753

RESUMEN

Correlation between the value of insulin-like growth factor-1 (IGF-1) in the diagnosis of dwarfism and the levels of growth hormone (GH) and insulin-like growth factor binding protein-3 (IGFBP-3) was investigated. From April 2014 to June 2017, 122 children with dwarfism who were treated in The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University and The First Affiliated Hospital of Xinxiang Medical University were selected as the experimental group, and 51 normal children as the control group. The basic information was recorded in detail; serum GH and IGFBP-3 levels were measured using an arginine stimulation test and an insulin hypoglycemia stimulation test, respectively. According to the peak of GH in the experimental group, there were 65 cases of growth hormone deficiency (GHD) and 57 cases of idiopathic short stature (ISS). The expression levels of IGF-1 of the serum in the experimental and control group were detected by chemiluminescence immunoassay (CLIA). The correlation between IGF-1 and GH, IGF-1 and IGFBP-3 was analyzed. The expression level of serum IGF-1 in GHD group was significantly lower than that in the ISS group (P<0.05). The expression level of serum IGF-1 in GHD group was significantly lower than that in the control group (P<0.05). The expression level of serum IGF-1 in ISS group was significantly lower than that in the control group (P<0.05). The results of partial correlation studies showed that IGF-1 is positively correlated with GH and IGFBP-3. Detection of GH and IGFBP-3 are important for the early diagnosis and comprehensive evaluation of children with dwarfism, and also in the detection of IGF-1 can reflect the therapeutic effect of dwarfism on recombinant human growth hormone (rhGH) treatment, which is worthy of application in clinics.

20.
Neurocrit Care ; 30(1): 98-105, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-29987690

RESUMEN

BACKGROUND: To investigate the effects of hyperbaric oxygen (HBO) on brain damage and autophagy levels in a rat model of middle cerebral artery occlusion. METHODS: Neurologic injury and infarcted areas were evaluated according to the modified neurological severity score and 2,3,5-triphenyltetrazolium chloride staining. Western blots were used to determine beclin1, caspase-3 and fodrin1 protein expression. Beclin1 protein expression (an autophagy marker), positive terminal dUTP nick-end labeling (TUNEL) staining (an apoptosis marker) and positive propidium iodide (PI) staining (a necrosis marker) were detected by immunofluorescence. RESULTS: Our results indicated that HBO could decrease the infarct volume and speed up the recovery of the neurological deficit scores in ischemic rats. Beclin1 was down-regulated after HBO treatment. HBO treatment inhibited fodrin1 protein expression and decreased the number of PI-positive cells. HBO also down-regulated caspase-3 and decreased the number of TUNEL-positive cells. CONCLUSION: Cerebral ischemia caused early neuronal death due to necrosis, followed by delayed neuronal death due to apoptosis. Consequently, autophagy might be involved in all processes of ischemia. HBO could protect the brain against ischemic injury, and the possible mechanisms might be correlated with decreased autophagy activity and decreased apoptosis and necrosis levels.


Asunto(s)
Autofagia , Isquemia Encefálica/terapia , Oxigenoterapia Hiperbárica , Infarto de la Arteria Cerebral Media/terapia , Animales , Apoptosis/fisiología , Autofagia/fisiología , Isquemia Encefálica/patología , Isquemia Encefálica/fisiopatología , Muerte Celular/fisiología , Modelos Animales de Enfermedad , Infarto de la Arteria Cerebral Media/patología , Infarto de la Arteria Cerebral Media/fisiopatología , Masculino , Necrosis/patología , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...